Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Enzymol ; 687: 103-137, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37666629

RESUMEN

The SLC39 family of transporters, otherwise known as ZIPs for Zrt and Irt-like Proteins, function to increase cytosolic levels of transition metals. ZIP transporters have been identified at all phylogenetic levels and are members of the SoLute Carrier (SLC) superfamily. There are fourteen ZIP transporters encoded in the human genome. ZIP transmembrane proteins are expressed in the plasma membrane or membranes of intracellular organelles and have unique expression profiles across cell types. While direct structural efforts including x-ray crystallography, NMR and ab initio approaches have been effective tools in elucidating the structure of ZIPs, direct elucidation of the oligomeric state of these proteins is essential in understanding how wild type ZIP proteins function and whether mutations alter the oligomeric state of ZIPs. Unfortunately, several tools to quantify oligomeric states of proteins require overexpression of proteins which can lead to artifacts in experimental results. In contrast, fluorescence correlation spectroscopy (FCS) is a single-molecule technique which can be used to quantify the oligomeric state of transmembrane proteins. FCS takes advantage of the observation that the molecular brightness of a cluster of fluorescent molecules is directly proportional to the number of fluorescent molecules within the protein complex. This chapter describes how to implement FCS, focused on ZIP transporters, to quantify the oligomeric state of transmembrane in vivo. Included within this chapter are procedures to design constructs for experiments, transfection of mammalian cells as well as data acquisition and analysis. Taken together, FCS is a powerful mechanism to investigate the oligomeric state of proteins embedded within membranes of cells.


Asunto(s)
Proteínas de la Membrana , Proteínas de Transporte de Membrana , Humanos , Animales , Filogenia , Membrana Celular , Espectrometría de Fluorescencia , Mamíferos
2.
Sci Rep ; 12(1): 21083, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473915

RESUMEN

The human (h) ZIP4 is a plasma membrane transporter that functions to increase cytosolic zinc levels. hZIP4 encodes eight transmembrane domains and a large extracellular domain (ECD). This ECD is cleaved from the holo-transporter when cells are zinc-deficient. At the same time, mutations in the ECD can result in the zinc-deficiency disease Acrodermatitis enteropathica. Previously, it was shown that hZIP4's ECD is comprised of two structurally independent subdomains where contacts between the ECD monomeric units are centered at the PAL motif. These results lead to the hypothesis that ZIP4-ECD is essential to the dimerization of the holo-transporter. To test this hypothesis, we used Fluorescence Correlation Spectroscopy (FCS) to quantify the oligomeric state of full-length hZIP4 and hZIP4 lacking the ECD domain, each tagged with eGFP. Inspection of our experimental results demonstrate that both the full-length and truncated hZIP4 is a dimer when expressed in HEK293 cells. Parallel functional experiments demonstrate that the Km and Vmax for truncated and full-length hZIP4/eGFP are similar. Determining that truncated hZIP4/eGFP forms a dimer is a crucial step for understanding the function of the hZIP4-ECD, which provides more insight into how the diseases related to hZIP4 protein.


Asunto(s)
Proteínas de Transporte de Membrana , Zinc , Humanos , Células HEK293
3.
Biomolecules ; 12(5)2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35625653

RESUMEN

The human (h) transporter hZIP4 is the primary Zn2+ importer in the intestine. hZIP4 is also expressed in a variety of organs such as the pancreas and brain. Dysfunction of hZIP4 can result in the Zn2+ deficiency disease acrodermatitis enteropathica (AE). AE can disrupt digestive and immune system homeostasis. A limited number of hZIP4 expression strategies have hindered increasing knowledge about this essential transmembrane protein. Here, we report the heterologous expression of hZIP4 in Saccharomyces cerevisiae. Both a wild-type and a mutant S. cerevisiae strain, in which the endogenous Zn2+ transporters were deleted, were used to test the expression and localization of an hZIP4-GFP fusion protein. A full-length hZIP4-GFP and a truncated membrane-domain-only (mhZIP4-GFP) protein were observed to be present in the plasma membrane in yeast.


Asunto(s)
Acrodermatitis , Proteínas de Transporte de Catión , Acrodermatitis/metabolismo , Proteínas Portadoras , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Zinc/deficiencia
4.
Biochemistry ; 58(13): 1705-1708, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30874431

RESUMEN

The human (h) zinc transporter ZIP4 is expressed on the plasma membrane and functions to increase cytosolic zinc levels. Mutations in hZIP4 cause the disease acrodermatitis enteropathica. Dysfunction in the regulation of hZIP4 has also been indicated in solid tissue cancers, including pancreatic and prostate cancer. Although structural studies of the extracellular domain and computational modeling of the membrane domain suggest hZIP4 exists as a dimer, the oligomerization status of hZIP4 in the plasma membrane of mammalian cells has not been directly quantified in vivo. Here, the oligomeric state of hZIP4 expressed in HEK293 cells was quantified using fluorescence correlation spectroscopy. hZIP4 was tagged with eGFP, and by comparing brightness values (ε) of monomer and tandem eGFP constructs to that of an hZIP4/eGFP, we show that hZIP4 is a dimer. Determining that hZIP4 is a dimer is an important step toward understanding the function and processing of the protein, which can provide more insight into how diseases affected by hZIP4 occur and can be managed.


Asunto(s)
Proteínas de Transporte de Catión/química , Membrana Celular/química , Células HEK293 , Humanos , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína , Espectrometría de Fluorescencia
5.
Protein Sci ; 28(5): 868-880, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30793391

RESUMEN

The human zinc- and iron-regulated transport protein 4 (hZIP4) protein is the major plasma membrane protein responsible for the uptake of zinc in the body, and as such it plays a key role in cellular zinc homeostasis. hZIP4 plasma membrane levels are regulated through post-translational modification of its large, disordered, histidine-rich cytosolic loop (ICL2) in response to intracellular zinc concentrations. Here, structural characteristics of the isolated disordered loop region, both in the absence and presence of zinc, were investigated using nuclear magnetic resonance (NMR) spectroscopy. NMR chemical shifts, coupling constants and temperature coefficients of the apoprotein, are consistent with a random coil with minor propensities for transient polyproline Type II helices and ß-strand in regions implicated in post-translational modifications. The ICL2 protein remains disordered upon zinc binding, which induces exchange broadening. Paramagnetic relaxation enhancement experiments reveal that the histidine-rich region in the apoprotein makes transient tertiary contacts with predicted post-translational modification sites. The residue-specific data presented here strengthen the relationship between hZIP4 post-translational modifications, which impact its role in cellular zinc homeostasis, and zinc sensing by the intracellular loop. Furthermore, the zinc sensing mechanism employed by the ICL2 protein demonstrates that high-affinity interactions can occur in the presence of conformational disorder.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Zinc/metabolismo , Sitios de Unión , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína
6.
Metallomics ; 7(9): 1319-30, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25882556

RESUMEN

The human (h) ZIP4 transporter is a plasma membrane protein which functions to increase the cytosolic concentration of zinc. hZIP4 transports zinc into intestinal cells and therefore has a central role in the absorption of dietary zinc. hZIP4 has eight transmembrane domains and encodes a large intracellular loop between transmembrane domains III and IV, M3M4. Previously, it has been postulated that this domain regulates hZIP4 levels in the plasma membrane in a zinc-dependent manner. The objective of this research was to examine the zinc binding properties of the large intracellular loop of hZIP4. Therefore, we have recombinantly expressed and purified M3M4 and showed that this domain binds two zinc ions. Using a combination of site-directed mutagenesis, metal binding affinity assays, and X-ray absorption spectroscopy, we demonstrated that the two Zn(2+) ions bind sequentially, with the first Zn(2+) binding to a CysHis3 site with a nanomolar binding affinity, and the second Zn(2+) binding to a His4 site with a weaker affinity. Circular dichroism spectroscopy revealed that the M3M4 domain is intrinsically disordered, with only a small structural change induced upon Zn(2+) coordination. Our data supports a model in which the intracellular M3M4 domain senses high cytosolic Zn(2+) concentrations and regulates the plasma membrane levels of the hZIP4 transporter in response to Zn(2+) binding.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Zinc/química , Zinc/metabolismo , Cisteína/química , Cisteína/metabolismo , Histidina/química , Histidina/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...